Analysis of Aggregation - Based Multigrid ∗ Adrian

نویسنده

  • ADRIAN C. MURESAN
چکیده

Aggregation-based multigrid with standard piecewise constant like prolongation is investigated. Unknowns are aggregated either by pairs or by quadruplets; in the latter case the grouping may be either linewise or boxwise. A Fourier analysis is developed for a model twodimensional anisotropic problem. Most of the results are stated for an arbitrary smoother (which fits with the Fourier analysis framework). It turns out that the convergence factor of two-grid schemes can be bounded independently of the grid size. With a sensible choice of the (linewise or boxwise) coarsening, the bound is also uniform with respect to the anisotropy ratio, without requiring a specialized smoother. The bound is too large to guarantee optimal convergence properties with the V-cycle or the standard W-cycle, but a W-cycle scheme accelerated by the recursive use of the conjugate gradient method exhibits near grid independent convergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Aggregation-Based Multigrid

Aggregation–based multigrid with standard piecewise constant like prolongation is investigated. Unknowns are aggregated either by pairs or by quadruplets; in the latter case the grouping may be either linewise or boxwise. A Fourier analysis is developed for a model two– dimensional anisotropic problem. Most of the results are stated for an arbitrary smoother (which fits with the Fourier analysi...

متن کامل

An aggregation-based algebraic multigrid method

An algebraic multigrid method is presented to solve large systems of linear equations. The coarsening is obtained by aggregation of the unknowns. The aggregation scheme uses two passes of a pairwise matching algorithm applied to the matrix graph, resulting in most cases in a decrease of the number of variables by a factor slightly less than four. The matching algorithm favors the strongest nega...

متن کامل

Non-Galerkin Multigrid Based on Sparsified Smoothed Aggregation

Algebraic Multigrid (AMG) methods are known to be efficient in solving linear systems arising from the discretization of partial differential equations and other related problems. These methods employ a hierarchy of representations of the problem on successively coarser meshes. The coarse-grid operators are usually defined by (Petrov-)Galerkin coarsening, which is a projection of the original o...

متن کامل

Analysis of an Algebraic Petrov-Galerkin Smoothed Aggregation Multigrid Method

We give a convergence estimate for a Petrov-Galerkin Algebraic Multigrid method. In this method, the prolongations are defined using the concept of smoothed aggregation while the restrictions are simple aggregation operators. The analysis is carried out by showing that these methods can be interpreted as variational Ritz-Galerkin ones using modified transfer and smoothing operators. The estimat...

متن کامل

Smoothed Aggregation Multigrid for Markov Chains

A smoothed aggregation multigrid method is presented for the numerical calculation of the stationary probability vector of an irreducible sparse Markov chain. It is shown how smoothing the interpolation and restriction operators can dramatically increase the efficiency of aggregation multigrid methods for Markov chains that have been proposed in the literature. The proposed smoothing approach i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006